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Abstract
As the popularity of the Android platform grows, the number of malicious apps targeting this platform grows along with it. Accordingly,
as the number of malicious apps increases, so too does the need for an automated system which can effectively detect and classify these
apps and their families. This paper presents a new system for classifying malware by leveraging the text strings present in an app’s
binary files. This approach was tested using over 5,000 apps from 14 different malware families and was able to classify samples with

over 99% accuracy while maintaining a false positive rate of 2.0%.

Keywords: Mobile Malware, Android, String analysis

1. Introduction

The rising popularity of the Android platform has led to an
increase in observed malware, as much as 391% from 2013
to 2014 (Pulse Secure Mobile Threat Center, 2015). This
unprecedented increase is often associated with the inherit
openness of the Android platform, and the corresponding
lack of security measures to prevent potential abuse.
Consequently, a significant amount of research attention
has focused on exploring the nature of malware applica-
tions and developing techniques for their detection. A wide
range of malware detection approaches have been intro-
duced, from generic methods such as RiskRanker (Grace
et al., 2012a), DroidRanger (Zhou et al., 2012b), and
Drebin (Arp et al., 2014), to more specialized methods of-
fering detection of repackaging (Crussell et al., 2013; Gon-
zalez et al., 2015; Zhou et al., 2013) and privacy viola-
tions (Enck et al., 2010; Zhang et al., 2013). Keeping up
with the growing prevalence of Android malware, the ex-
isting studies focus on either a complex multi-feature anal-
ysis capable of providing insight into a malware sample
(e.g., DroidSafe (Gordon et al., 2015)), or a large-scale bi-
nary classification identifying malicious and benign sam-
ples during the triage stage.

With the increasing amount and complexity of malware, in
triaging it is beneficial to employ methods that do not rely
on sophisticated analyses, and are capable of providing in-
sight into the malicious functionality represented by a mal-
ware app.

Since core functionality is shared by samples of the same
malware family, identification of the malware family that
a sample belongs to is the first step in understanding and
assessing malware impact and potential damage.

In this work, we propose a machine-learning based ap-
proach for the detection of Android malware through anal-
ysis of unreferenced, hidden strings present in Android ex-
ecutables. In general, strings have multiple uses in Android
binaries, including referencing code components based on
class or methods’ names. Prior research has focused mostly
on analysis of the code portions of Android executables
(i.e., .dex files) referenced through corresponding strings.
Since this is typical and therefore expected code invocation
method, it is commonly employed in reverse engineering
of Android applications (commonly referred to as apps).

Leveraging this, malware authors often avoid detection by
doing indirect code invocation by placing code in unrefer-
enced strings. In this work, we propose to explore these
components. Specifically, we investigate the role of strings
found within an Android executable, but not referenced by
the code.

We evaluate the proposed method with a dataset
made available through The Android Malware Genome
project (Zhou and Jiang, 2012), and a collection of over
4,000 benign apps retrieved from Google Play market. Our
findings using this novel approach based on unreferenced
strings show that this is an efficient alternative to prior
approaches to malware classification. Our best approach
achieves 99.3% accuracy, and a false positive rate of just
0.5%, for malware detection, and 99.2% accuracy with a
false positive rate of 2.0% for malware family classifica-
tion.

We further contrast our approach against the one using all
strings. Our experiments show that using only a small set
of unreferenced string features, we are able to effectively
identify a suspicious app maintaining the same high accu-
racy as with all strings.

The rest of this paper is organized as follows: we present
related work in Section 2. Our system design is described
in Section 3. A detailed description of the features used
for classification are outlined in Section 4. We describe
our experimental setup in Section 5. We present results in
Section 6. Finally, we conclude our work in Section 7.

2. Related Work

In recent years the area of mobile security has seen exten-
sive growth and improvement. A broad overview of charac-
teristics of mobile malware, and approaches to its detection,
has been given by Zhou et al. (2012), Polla et al. (2013), and
Alzahrani et al. (2014).

The resource-constrained environment of mobile platforms
presents significant challenges to the detection of malware.
As aresult, features that detection techniques rely on play a
critical role for the accuracy of malware detection. The fea-
tures commonly used in existing classification studies can
be grouped into two categories: dynamic features derived
from an app’s behaviour during runtime, and static features,
extracted from an app itself.



Systems that wuse dynamic analysis, such as
RiskRanker (Grace et al., 2012b), focus on an app’s
behaviour while running, typically monitoring system calls
made by the app. CopperDroid (Tam et al., 2015) and
DroidScope (Yan and Yin, 2012) are examples of tech-
niques that utilize dynamic features at a host level (e.g.,
system calls). Arora et al. (2014) focused on network-level
features extracted from app behaviour.

Techniques that employ static analysis target the files that
are packaged with an application. This eliminates the need
to execute the app in order to detect any malicious in-
tent. The majority of systems that utilize static analysis
have focused on two types of packaged files: AndroidMan-
ifest.xml — which holds the app’s metadata — and exe-
cutable files. App permissions contained in AndroidMan-
ifest.xml have been explored by several studies, includ-
ing DroidRanger (Zhou et al., 2012b), Drebin (Arp et al.,
2014), and Auditor (Talha et al., 2015).

Static features extracted from executables often require ad-
ditional preprocessing, and are commonly used in studies
in the form of opcode or bytecode n-grams. For instance,
Wolfe et al. (2014) analyze the bytecode n-grams extracted
from Android binaries. Juxtapp (Hanna et al., 2013) eval-
uates code similarity based on opcode n-grams extracted
from selected packages of the disassembled .dex file. Sim-
ilarly, DroidMOSS (Zhou et al., 2012a) evaluates app sim-
ilarity using fuzzy hashes constructed based on a series of
opcodes. DroidKin (Gonzalez et al., 2014) detects unique
apps by analyzing the similarity of opcode n-grams and
metadata of apps.

In contrast to these previous studies, we propose a novel
form of static analysis based specifically on features de-
rived from the unreferenced strings contained within an ex-
ecutable.

3. Android String Analysis

An Android application package (APK) file, is a com-
pressed folder that contains a variety of files including an
executable .dex file; a manifest file (AndroidManifest.xml)
that describes the content of the package; and resources
files (e.g., image and sound files). The Dalvik executable
file, or simply .dex file, is a binary that results from compil-
ing the app’s Java source code. As illustrated by Figure 1,
this file is partitioned into a number of sections that describe
aspects of the structure of the file.

Among these sections are several identifier lists that con-
tain offsets pointing to the corresponding entries in the
data section. As such, the string identifiers list (i.e., the
string_ids section) provides offsets to all strings used by
the .dex file. These strings are used for internal naming
— e.g., class, field, or local variable names — and to ref-
erence constant objects specified in the source code (e.g.,
string literals). The other identifier sections — type_ids,
proto_ids, field_ids, method_ids, and class_defs — may also
contain references to the string identifiers list. For example,
aclass named myclass will have a corresponding entry in
the string identifier section pointing to the actual string my-
class.

This structure is defined in a formal specification of the
layout of .dex executable files guiding the development of

Header
(structural information)

String_ids
offset list to string data items

Type_ids
identifiers list of types

Proto_ids
identifiers list of prototypes

Field_ids
identifiers list of fields

Method_ids
identifiers list of methods

Class_defs
index list of classes

Data
(actual code and data items)

Link_data

Figure 1: The structure of a DEX file.

Android apps.! Although app development must follow
the suggested guidelines, there are a number of techniques
that enable parts of code to be hidden in an Android exe-
cutable (Apvrille, 2012; Apvrille, 2013). The main premise
of these techniques is to place the code inside the data sec-
tion while avoiding it being referenced by class and method
index lists. Since these lists are typically used to invoke the
methods and classes, this prevents reverse engineering of an
app and allows malware apps to bypass anti-malware scans.
The majority of prior research has focused on the code sec-
tion of the officially documented .dex structure. In contrast,
we explore the text components. As such we differentiate
between strings that are pointed to by any of the other iden-
tifier sections, denoted as “referenced strings”, and all other
strings referred to as “unreferenced strings”. Referenced
strings can be viewed as a part of functional app code. They
are linked to other identifier lists and thus, for example,
can represent classes, methods, or data structures. On the
other hand, the data section also contains “‘unreferenced”
strings that are only referenced by the string offset list, and
thus carry textual information, e.g., string literals. In prior
work on malware analysis this part of the code has not car-
ried the same weight as the functional portion. However,
these unreferenced strings often carry hidden or interest-
ing information. For example, hardcoded URLs and email
addresses (represented as strings) are common in malware
apps, and would occur amongst the unreferenced strings.
As such, analysis of unreferenced strings can potentially
indicate malicious activity embedded in Android apps.

In this paper we investigate the impact of unreferenced
strings found within the Android executable on the tasks
of identifying malicious Android apps, and classifying An-
droid apps with respect to malware family.

'nttps://source.android.com/devices/tech/
dalvik/dex-format.html. Accessed: 2016-02-11
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Figure 2: The sequence of analysis in the proposed
approach.

3.1. String analysis

To investigate the role of unreferenced strings in malware
analysis, the proposed system encompasses several steps:
string extraction, pruning, feature vector generation, and fi-
nally assessment, as shown in Figure 2. The initial steps
of string extraction and pruning primarily focus on prepro-
cessing activities that are necessary to allow our system
to carry out feature vector generation. These vectors then
serve as the basis for the following classification and anal-
ysis.

In the strings extraction step, for each app under analysis,
our system recursively unpacks and extracts all .dex files
found in both the root APK, as well as within all sub-APKs.
All of these .dex files contribute to the final string data as-
sociated with the root app. The strings of each .dex file are
extracted by traversing the string_ids list and collecting all
strings present in data section.

The pruning step then prunes these strings to only include
the unreferenced strings. This is accomplished by travers-
ing the 5 other identifier lists — type, proto, field, method,
and class — and then removing strings that are referenced
by these lists. The resulting unreferenced strings therefore
consist solely of non-executable code, such as string liter-
als and local variable names, as well as strings from hidden
executable parts of code not referenced through identifier
lists. These remaining strings then form the basis for fea-
ture vectors.

To generate feature vectors in the feature vector generation
step, we consider word-level string n-gram features (de-
scribed in the following section) derived from the unrefer-
enced strings. As a point of comparison, we also consider
feature vectors generated from all strings (i.e., referenced
and unreferenced strings). To form these feature vectors,
we simply omit the pruning step.

In contrast to our proposed approach, malware analysis is
typically conducted at the bytecode or opcode level. Op-
codes are generally beneficial in representing the low-level
semantics of the code, while bytecode is seen as the com-
plete representation of the code at a low-level. As a further
important point of comparison, we therefore also experi-
ment with opcode and bytecode n-grams (also described in
the Section 4.). For these opcode and bytecode features, the
strings extraction and pruning phases do not apply.

Feature vectors are generated for each app in a large collec-
tion of Android apps, each of which is known to be either a

malicious app, or a benign (non-malware) app. In the case
of malware, the malware family is also known. These fea-
ture vectors are used to train supervised classifiers to iden-
tify malicious Android apps, and classify Android apps ac-
cording to their malware family. After training, in the mal-
ware classification step the malware status and family of
a new app is assessed based on its classification under the
previously-trained classifier model.

4. String features

To preserve the semantics of the original strings, the string
features used in the proposed approach were extracted at
the word level. They were then processed into n-grams of
varying lengths. An n-gram is a contiguous sequence of n
items. In the case of word level n-grams these items are
words in a sentence. For example, given the sentence Good
morning John Doe., three 2-gram tokens can be made:

1. Good morning
2. morning John
3. John Doe.

Note that the tokenization used here was to split a string
based on whitespace; therefore in this case the period at the
end of the sentence is a part of the word Doe.

In the feature vector generation process, each extracted
string was written onto a separate line, so that these word
level n-grams could be line bounded. This was done to
ensure that n-grams did not contain words from different
lines. Since the strings are held in lexicographical order, ad-
jacent strings are not necessarily related. As such, n-grams
spanning multiple lines would contain word sequences that
are not associated, that is, words that are not a part of the
same original string. These n-grams would contain mean-
ingless relationships, and would thus add noise to the fea-
ture set, which could hinder classification.

4.1. String Feature Extraction

Each app was represented using both token (n-gram) fre-
quencies and token frequency-inverse document frequency
(tf-idf) weights. Frequency vectors contain the number of
times a term (i.e., an n-gram) occurs in a given document
(where in our case a “document” is the collection of strings
extracted from a given app); tf-idf assigns lower weights to
terms that occur in many documents, and is calculated as
follows:

tf-idf; ¢ = fi.q * log (N> (1)
n;

where f; 4 is the frequency of term ¢ in document d, IV is
the total number of documents, and n; is the number of
documents that term ¢ occurs in at least once.

These tokens were extracted by grouping the strings on
each line into word level n-grams, with n ranging from
1 to 4. Any lines that had fewer than n words were ig-
nored for that feature set. The analysis of string sizes across
our dataset showed that only a few strings had more than 4
words (Figure 3). As such in this work we capped n-gram
length at 4.

If n > 1 then a unique line boundary token was added to
the start and end of each line. This ensured that all lines



Table 1: Examples of n-gram features. <LB> is the line boundary token.

Line Text 1-grams 2-grams 3-grams 4-grams
mThread= | <LB> mThread= | <LB> mThread= <LB>
mThread=
mThread= <LB>
wrote <LB> wrote <LB> wrote final <LB> wrote final 256;
wrote final 256: final wrote final wrote final 256; wrote final 256; <LB>
’ 256; final 256; final 256; <LB>
256; <LB>
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Figure 3: The distribution of string lengths in the dataset.

contained at least 3 words (including the line boundary to-
kens), thereby reducing the number of lines that were ig-
nored for having fewer than n words, and therefore making
more information available in the feature vectors. Adding
line boundary tokens also serves to identify the words and
n-grams that occur at the beginning and end of strings. This
could be potentially important information in that a string
that begins with, for example, warning or error could mean
something very different than a string that simply contains
these words.

Line boundary tokens were not added to the 1-gram fea-
tures. The frequency of these special line boundary tokens
in this case would be equivalent to counting the number
of strings in the app. As this information is not directly
encoded by the other n-gram features, it was also avoided
here.

An example of the proposed feature extraction method is
shown in Table 1. Note the following important properties:

e There are no <LB> tokens for the 1-gram feature sets.

e There were no 4-gram tokens for the first string,
“mThread=". This is because, even with the line
boundary tokens, the string only contained 3 words.
As such, it was ignored for not having at least n = 4
words in it.

e The words in the 2 and 3-gram tokens were in the same
order in which they appeared in the original string, and
the words were always adjacent. That is, the 2-gram
feature set did not contain tokens such as “final wrote”
or “wrote 256;”.

Table 2: Distribution of Android APK files across malware

families
Malware Family File Count
1 ADRD 22
2 AnserverBot 187
3 BaseBridge 122
4 DroidDreamLight 46
5 DroidKungFul 34
6 DroidKungFu2 30
7 DroidKungFu3 309
8 DroidKungFu4 96
9 Geinimi 69
10 GoldDream 47
11 KMin 52
12 Pjapps 58
13 YZHC 22
14 Other 166
15 Benign GooglePlay apps 4,574
Total 5,834
S. Experimental setup
5.1. Data

To evaluate the performance of the proposed malware anal-
ysis approach we employed a standard benchmark dataset
produced by The Android Malware Genome project (Zhou
and Jiang, 2012). This dataset consists of 1,260 malware
apps. We also required a collection of benign (i.e., non-
malware) apps for evaluation purposes. We performed a
large-scale study of the top Android applications retrieved
from Google Play market between September 2014 and
January 2015. These apps were inspected by ESET anti-
virus scanner to detect the presence of malware. All mali-
cious apps were removed from the dataset. This resulted in
4,574 benign (i.e., non-malware) GooglePlay apps which
were used in this study.

The apps retrieved from Google play market and The An-
droid Malware Genome project were used for classification
experiments. This dataset of 5,834 apps is detailed in Ta-
ble 2.

Some families in this dataset ended up with only a few sam-
ples, making classification and validation of results diffi-
cult. As such we grouped low frequency families into an
“Other” class. The app distribution among the families had
a convenient gap between families with 16 and 22 samples.
As such, all families that had fewer than 17 files were con-
sidered to be low frequency, and placed in the ‘Other’ class.
Thereby resulting in 15 distinct malware families, including
the benign GooglePlay apps.



5.2. Feature extraction

Opcodes for each DEX file were extracted using dexdump,
a disassembler tool that is a part of the Android SDK.
Opcode operands were discarded as their variability typi-
cally results in noise and excessively sparse feature vectors
which makes classification more difficult.

Each app was represented using opcode n-grams, where n
ranged from 1 to 4, the same range of n considered for
string n-grams. Opcode n-grams were DEX file bounded
(as opposed to line bounded in the case of string n-grams).
A special DEX file boundary token was included for the op-
code n-grams for n > 1, for similar reasons as the inclusion
of the line boundary token in the case of string n-grams.
The bytecode features were obtained by reading each byte
of each DEX file. Since DEX files start with the magic
number “dex”,? thus acting as built-in boundary tokens, ad-
ditional boundary tokens were not used. Each app was rep-
resented using bytecode n-grams, where n ranged from 1
to 2.

5.3. Classification and Baseline

We implemented the proposed approach in Python, using
the scikit-learn library (Pedregosa et al., 2011). In prelimi-
nary experiments we considered a variety of classifiers in-
cluding k-nearest neighbors, multinomial naive Bayes, lo-
gistic regression, and a linear support vector machine. The
linear SVM (Fan et al., 2008) had the best performance, or
close to it, in terms of both accuracy and false positive rate
on malware detection and family classification. We there-
fore focus on, and report results for, the linear SVM classi-
fier for the remainder of the paper.

In the case of the datasets used in this study, and in most
application marketplaces, benign applications outnumber
malicious applications. In a case such as this where the
classes (benign and malicious) are imbalanced, a very naive
strategy of simply selecting the most frequent class can
perform very well, particularly in terms of accuracy. We
therefore also report a majority class baseline — referred
to as “Baseline” — that classifies all samples as the most
common class in the training data. In our experiments this
strategy will classify all samples as benign. This baseline
provides a reference against which we can interpret the re-
sults of other methods. Crucially, it is not the only ap-
proach against which we compare our string-based classi-
fication approaches; we also consider approaches based on
opcodes.

6. Experimental Results

In our experimental study we focused on analysis of:

1. Binary classification: classification of a sample as ei-
ther a malicious or benign app. This type of classifica-
tion is also referred to as malware detection.

2. Malware family classification: where the samples
were classified as one of 15 different classes, 14 of
which are malware families and 1 class representing

https://source.android.com/devices/tech/
dalvik/dex-format.html Accessed: 2016-02-11

benign apps. These families, and the number of files
in them, are listed in Table 2.

3. Unreferenced strings vs all strings: The classifica-
tion performance using unreferenced strings was con-
trasted against that using all strings (i.e., referenced
and unreferenced).

4. Classification with selected string features: classifica-
tion of apps based on selected, highly-informative fea-
tures.

All classification experiments were repeated 5 times, each
using stratified 5-fold cross validation.

6.1. Unreferenced strings vs all strings

We compared the performance of the linear SVM when us-
ing all of the strings versus using only the unreferenced
strings. These results are shown in Table 3. The results are,
overall, quite similar. For example, the best accuracy for
malware detection (“Binary”) is 99.5% for all strings, and
99.3% for unreferenced strings. For malware family classi-
fication there is a similarly small difference in terms of the
best accuracy for the all strings and unreferenced strings ap-
proaches. That the all strings approach does slightly better
does not come as a surprise; retaining all strings provides
more information to the classifier. However, with unrefer-
enced strings, we are able to drastically cut the total number
of strings that are examined (from roughly 127 million to
46 million) while maintaining a similar accuracy.

The performance results of the linear SVM classifier us-
ing only the unreferenced strings for malware detection and
malware family classification are shown in Table 4. Un-
surprisingly, all n-gram classification strategies performed
significantly better than the baseline in all cases, with the
exception of the false positive rate for malware detection
(Binary).

For both malware detection and family classification, we
see an increase in performance for all metrics when in-
creasing the size of the word grams from 1 to 2, and again
when increasing from 2 to 3. This is likely caused by the
increased contextual information that is carried by higher
order n-grams. However, there is a clear drop in per-
formance for 4-grams. Two factors could contribute to
this. Data sparsity could be an important factor, because
many 4-grams will be unique. Furthermore, the system ig-
nores strings that contain fewer than n words after padding
with line boundary tokens. The 4-gram strategy ignored
over 30M lines throughout the dataset. One possibility
to overcome this would be to pad lines with additional
word boundary tokens; however, this would substantially
increase the number of features in this model, making clas-
sification much more computationally intensive.

The best strategy for both malware detection and family
classification was to use 3-gram word counts. This strat-
egy was able to achieve near perfect (> 99%) accuracy for
both malware detection and malware family classification
while maintaining a low false positive rate. Moreover, the
accuracy, precision, and recall of this method is better than
that for any of the classifiers using the more-conventional
bytecode or opcode n-gram features.



Table 3: Accuracy (Acc), macro-averaged precision (Prec) and recall (Rec), and false positive rate (FPR) for malware
detection (Binary) and malware family classification (Family) using a linear SVM with features based on all strings (All)
and just the unreferenced strings (Unref).

Strategy Acc Prec Rec FPR

All Unref All Unref All Unref All Unref

1-gram word freq. | 99.3% | 98.8% | 97.8% | 96.5% | 99.0% | 98.1% | 0.63% | 0.99%

2-gram word freq. | 99.5% | 99.2% | 98.6% | 98.0% | 99.1% | 98.5% | 0.40% | 0.56%

3-gram word freq. | 98.6% | 99.3% | 96.8% | 98.1% | 96.6% | 98.6% | 0.87% | 0.50%

Binary | 4-gram word freq. | 98.5% | 98.6% | 96.7% | 96.9% | 96.5% | 96.7% | 0.89% | 0.85%
1-gram word tf-idf | 99.4% | 99.3% | 99.3% | 99.4% | 98.0% | 97.2% | 0.18% | 2.8%

2-gram word tf-idf | 99.3% | 99.2% | 99.3% | 99.3% | 97.3% | 97.2% | 0.19% | 2.8%

3-gram word tf-idf | 98.8% | 99.2% | 99.2% | 99.3% | 95.0% | 96.9% | 0.21% | 3.1%

4-gram word tf-idf | 98.6% | 98.6% | 99.1% | 99.1% | 94.5% | 94.5% | 0.25% | 0.24%

1-gram word freq. | 99.0% | 98.5% | 97.4% | 96.7% | 97.2% | 96.5% | 88.6% | 2.7%

2-gram word freq. | 99.5% | 99.0% | 98.4% | 98.3% | 98.4% | 97.5% | 94.9% | 1.6%

3-gram word freq. | 98.2% | 99.2% | 95.9% | 98.6% | 95.2% | 98.0% | 4.8% 2.0%

Family | 4-gram word freq. | 98.2% | 98.4% | 94.9% | 96.2% | 94.9% | 95.5% | 5.1% 4.5%
1-gram word tf-idf | 98.5% | 96.6% | 98.6% | 98.7% | 93.3% | 94.4% | 6.7% 5.6%

2-gram word tf-idf | 98.3% | 98.7% | 98.0% | 98.6% | 92.4% | 94.9% | 7.6% 5.1%

3-gram word tf-idf | 97.5% | 98.4% | 96.0% | 97.9% | 88.6% | 93.2% | 11.4% | 6.8%

4-gram word tf-idf | 97.1% | 97.1% | 93.5% | 93.5% | 85.0% | 85.0% | 15.0% | 15.0%

Table 4: Accuracy (Acc), macro-averaged precision (Prec) and recall (Rec), and false positive rate (FPR) for malware
detection (Binary) and malware family classification (Family) using a linear SVM with features based unreferenced
strings, bytecodes, and opcodes.

Strategy Binary Family

Acc Prec Rec FPR Acc Prec Rec FPR

Baseline 78.4% 0.00% | 78.4% 93.3%

1-gram word freq. 98.8% | 96.5% | 98.1% | 0.99% | 98.5% | 96.7% | 96.5% | 3.5%

2-gram word freq. 99.2% | 98.0% | 98.5% | 0.56% | 99.0% | 98.3% | 97.5% | 2.5%

3-gram word freq. 99.3% | 98.2% | 98.6% | 0.50% | 99.2% | 96.2% | 95.5% | 2.0%

4-gram word freq. 98.6% | 96.9% | 96.7% | 0.85% | 98.4% | 98.6% | 98.0% | 4.5%

1-gram word tf-idf 99.3% | 994% | 97.2% | 2.8% | 96.6% | 98.7% | 94.4% | 5.6%

2-gram word tf-idf 99.2% | 993% | 97.2% | 2.8% | 98.7% | 98.6% | 94.9% | 5.1%

3-gram word tf-idf 99.2% | 993% | 96.9% | 3.1% | 98.4% | 97.9% | 93.2% | 6.8%
4-gram word tf-idf 98.6% | 99.1% | 94.5% | 0.24% | 97.1% | 93.5% | 85.0% | 14.99%
1-gram bytecode freq. | 85.6% | 70.1% | 70.7% | 10.29% | 74.8% | 24.7% | 21.4% | 78.58%
2-gram bytecode freq. | 92.3% | 83.5% | 83.0% | 5.09% | 83.0% | 39.7% | 29.7% | 70.26%
1-gram bytecode tf-idf | 79.0% | 93.0% | 3.14% | 0.06% | 784% | 7.0% | 6.8% | 93.23%
2-gram bytecode tf-idf | 94.1% | 86.8% | 86.0% | 3.62% | 82.2% | 19.2% | 14.5% | 85.53%
1-gram opcode freq. | 97.9% | 95.0% | 953% | 1.38% | 959% | 84.7% | 85.3% | 14.71%
2-gram opcode freq. | 98.1% | 95.0% | 96.4% | 1.42% | 96.7% | 90.1% | 87.9% | 12.07%
3-gram opcode freq. | 98.2% | 95.0% | 96.8% | 1.39% | 97.4% | 94.0% | 91.5% | 8.52%
1-gram opcode tf-idf | 98.5% | 96.0% | 97.3% | 1.12% | 95.7% | 92.4% | 77.0% | 22.99%
2-gram opcode tf-idf | 99.3% | 98.1% | 98.7% | 0.52% | 97.9% | 95.2% | 89.7% | 10.32%
3-gram opcode tf-idf | 99.2% | 98.0% | 98.4% | 0.56% | 97.9% | 95.2% | 90.7% | 9.28%

6.2. Feature Selection

Since anti-malware vendors are forced to maintain large
and ever-growing numbers of signatures for malware de-
tection, it is important that any malware detection and clas-
sification methods be able to use a minimal number of fea-
tures. As such, we tested the proposed method using only
the 50 highest ranked 3-gram tokens, extracted from the un-
referenced strings, for each family.

These 3-grams were ranked by training a linear SVM using
the one-vs-rest classification strategy. Features that have

high coefficients have more of an impact on how the linear
SVM classifies a given sample. Therefore, the 50 tokens
that had the highest coefficient for each family, are equiva-
lent to the 50 highest ranked tokens for each of those fami-
lies. We present examples of the top-5 ranked 3-grams for
selected families in Table 5. By using only these 50 strings
per family, we were able to reduce the number of features
to 728.> These features suggest that unreferenced strings

3Because some tokens were indicative of multiple families, the
number is slightly less than the number of families * 50.



Table 5: The 5 most important 3-grams when used to classify selected malware families. Note that <LLB>> is the line
boundary token and that the whitespace between the words was removed to reduce memory consumption when training.

Class Rank Token
1 <LB> this <LB>
2 <LB> accessFlags <LB>
Benign apps 3 <LB> android.intent.action.VIEW <LB>

4 <LB> string <LB>
5 <LB> com.android.vending <LB>
1 <LB> /system/etc/.rild_cfg <LB>
2 <LB> /system/etc/.dhcpcd <LB>

DroidKungFu2 3 <LB> /WebView.db <LB>
4 <LB> WebView.db.init <LB>
5 <LB> /secbino <LB>
1 <LB> /system/etc/.rild_cfg <LB>
2 <LB> /system/etc/.dhcpcd <LB>

DroidKungFu3 3 <LB> -1 <LB>
4 <LB> sysName <LB>
5 <LB> 4/system/bin/chmod <LB>
1 <LB> Content-Disposition:form-data; <LB>
2 <LB> SmsDataType <LB>

GoldDream 3 <LB> zjphonecall.txt <LB>

4 <LB> lebar.gicp.net <LB>
5 <LB> wsv < LB >

that contain filenames, URLs, and source code are highly
informative as to malware families.

Further manual analysis of selected string n-grams also
confirmed our initial hypothesis that unreferenced strings
present a narrow more focused view of malware behavior
and bear interesting information. For example, GoldDream
Trojan app uploaded stolen information to a remote server.
The URL of this server ’lebar.gicp.net’ became visible only
through analysis of unreferenced strings (see Table 5). Our
analysis also revealed that strings often carry code snip-
pets that contain additional functionality. For example,
javascript might be embedded as a string to be executed
during the runtime of an app. The use of databases and
consequently the presence of sql queries was also prevalent
among malware apps.

In preliminary experiments considering this feature selec-
tion strategy, the accuracy obtained by using only these
728 features was 96.2%, which is only 3 percentage points
lower than using all of the unreferenced strings. However,
the false positive rate went up to 13.9%, an increase of
11.9 percentage points. Nevertheless, this feature selection
strategy managed to reduce the length of the feature vec-
tors from over 8 million to just 728, while still maintaining
relatively high accuracy.

6.3. Discussion

The proposed method of classifying Android malware is
rather promising due to several reasons. As opposed to
the majority of existing malware classification techniques
that rely on a large set of features, the proposed approach
requires only 50 features per malware family. This is espe-
cially appealing to anti-malware vendors that are constantly
forced to keep up with an ever-growing number of signa-
tures for malware detection.

The proposed method exhibits very good filtering capabil-
ity overall. Our results are especially attractive since it

seems to be possible to extract a small set of string features
that can effectively identify a suspicious app and further
characterize the majority of malware samples within a fam-
ily. This approach can complement the existing techniques
and significantly simplify the triaging stage in automated
analysis tools.

7. Conclusion

The amount of malware targeting the Android mobile plat-
form is on the rise, as such, the need for an effective auto-
mated system to detect and classify malware and the differ-
ent malware families is crucial. This study presented such
a solution, through the use of text strings extracted from
the DEX files of an android application. The proposed sys-
tem of using a linear SVM with line-bounded word-level
3-grams was able to classify malware families with an ac-
curacy of 99.2% while maintaining a false positive rate of
just 2.0%.

There are multiple opportunities for future work. First, we
will test the feature selection strategy on a dataset of obfus-
cated apps, as well as attempt to improve the string extrac-
tion process by using various natural language processing
techniques such as stemming and case folding. Finally, we
plan to use the datasets from this study to develop an en-
semble classification system which utilizes the string, byte-
code, and opcode features.
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