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Abstract
With an increasing number of malicious attacks, the number of people and organizations falling prey to social engineering attacks
is proliferating. Despite considerable research in mitigation systems, attackers continually improve their modus operandi by using
sophisticated machine learning, natural language processing techniques with an intent to launch successful targeted attacks aimed at
deceiving detection mechanisms as well as the victims. We propose a system for advanced email masquerading attacks using Natural
Language Generation (NLG) techniques. Using legitimate as well as an influx of varying malicious content, the proposed deep learning
system generates fake emails with malicious content, customized depending on the attacker’s intent. The system leverages Recurrent
Neural Networks (RNNs) for automated text generation. We also focus on the performance of the generated emails in defeating
statistical detectors, and compare and analyze the emails using a proposed baseline.
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1. Introduction
The continuous adversarial growth and learning has been
one of the major challenges in the field of Cybersecurity.
With the immense boom in usage and adaptation of the
Internet, staggering numbers of individuals and organiza-
tions have fallen prey to targeted attacks like phishing and
pharming. Such attacks result in digital identity theft caus-
ing personal and financial losses to unknowing victims.
Over the past decade, researchers have proposed a wide
variety of detection methods to counter such attacks (e.g.,
see (Verma and Hossain, 2013; Thakur and Verma, 2014;
Verma and Dyer, 2015; Verma and Rai, 2015; Verma and
Das, 2017), and references cited therein). However, wrong-
doers have exploited cyber resources to launch newer and
sophisticated attacks to evade machine and human super-
vision. Detection systems and algorithms are commonly
trained on historical data and attack patterns. Innovative at-
tack vectors can trick these pre-trained detection and clas-
sification techniques and cause harm to the victims.
Email is a common attack vector used by phishers that can
be embedded with poisonous links to malicious websites,
malign attachments like malware executables, etc (Drake
et al., 2004). Anti-Phishing Working Group (APWG) has
identified a total of 121,860 unique phishing email reports
in March 2017. In 2016, APWG received over 1,313,771
unique phishing complaints. According to sources in IRS
Return Integrity Compliance Services, around 870 organi-
zations had received W-2 based phishing scams in the first
quarter of 2017, which has increased significantly from 100
organizations in 2016. And the phishing scenario keeps
getting worse as attackers use more intelligent and sophis-
ticated ways of scamming victims.
Fraudulent emails targeted towards the victim may be con-
structed using a variety of techniques fine-tuned to create
the perfect deception. While manually fine-tuning such
emails guarantees a higher probability of a successful at-
tack, it requires a considerable amount of time. Phishers
are always looking for automated means for launching fast
and effective attack vectors. Some of these techniques in-

clude bulk mailing or spamming, including action words
and links in a phishing email, etc. But these can be easily
classified as positive warnings owing to improved statistical
detection models.
Email masquerading is also a popular cyberattack tech-
nique where a phisher or scammer after gaining access to
an individual’s email inbox or outbox can study the na-
ture/content of the emails sent or received by the target.
He can then synthesize targeted malicious emails masquer-
aded as a benign email by incorporating features observed
in the target’s emails. The chances of such an attack being
detected by an automated pre-trained classifier is reduced.
The malicious email remain undetected, thereby increasing
the chances of a successful attack.
Current Natural Language Generation (NLG) techniques
have allowed researchers to generate natural language text
based on a given context. Highly sophisticated and trained
NLG systems can involve text generation based on prede-
fined grammar like the Dada Engine (Baki et al., 2017) or
leverage deep learning neural networks like RNN (Yao et
al., 2017) for generating text. Such an approach essentially
facilitates the machine to learn a model that emulates the in-
put to the system. The system can then be made to generate
text that closely resembles the input structure and form.
Such NLG systems can therefore become dangerous tools
in the hands of phishers. Advanced deep learning neural
networks (DNNs) can be effectively used to generate co-
herent sequences of text when trained on suitable textual
content. Researchers have used such systems for generat-
ing textual content across a wide variety of genres - from
tweets (Sidhaye and Cheung, 2015) to poetry (Ghazvinine-
jad et al., 2016). Thus we can assume it is not long before
phishers and spammers can use email datasets - legitimate
and malicious - in conjunction with DNNs to generate de-
ceptive malicious emails. By masquerading the properties
of a legitimate email, such carefully crafted emails can de-
ceive pre-trained email detectors, thus making people and
organizations vulnerable to phishing scams.
In this paper, we address the new class of attacks based on



automated fake email generation. We start off by demon-
strating the practical usage of DNNs for fake email gener-
ation and walk through a process of fine-tuning the system,
varying a set of parameters that control the content and in-
tent of the text. The key contributions of this paper are:

1. A study of the feasibility and effectiveness of deep
learning techniques in email generation.

2. Demonstration of an automated system for generation
of ‘fake’ targeted emails with a malicious intent.

3. Fine-tuning synthetic email content depending on
training data - intent and content parameter tuning.

4. Comparison with a baseline - synthetic emails gener-
ated by Dada engine (Baki et al., 2017).

5. Detection of synthetic emails using a statistical detec-
tor and investigation of effectiveness in tricking an ex-
isting spam email classifier (built using SVM).

2. Related Works
Phishing detection is one of the widely researched areas of
cybersecurity. Despite the development of a large number
of phishing detection tools, many victims are still falling
prey to these attacks. Researchers in (Drake et al., 2004)
explicitly break down the structure of a phishing email, de-
scribing in detail the modus operandi of a phisher or scam-
mer. In this section, we review previous research in areas of
text generation using natural language and the use of deep
learning in generation of phishing based attacks and detec-
tion.
Textual Content Generation. Natural language genera-
tion techniques have been widely popular for synthesizing
unique pieces of textual content. NLG techniques proposed
by (Reiter and Dale, 2000; Turner et al., 2010) rely on
templates pre-constructed for specific purposes. The fake
email generation system in (Baki et al., 2017) uses a set
of manually constructed rules to pre-define the structure of
the fake emails. Recent advancements in deep learning net-
works have paved the pathway for generating creative as
well as objective textual content with the right amount of
text data for training. RNN-based language models have
been widely used to generate a wide range of genres like
poetry (Ghazvininejad et al., 2016; Xie et al., 2017), fake
reviews (Yao et al., 2017), tweets (Sidhaye and Cheung,
2015), geographical information (Turner et al., 2010) and
many more.
The system used for synthesizing emails in this work is
somewhat aligned along the lines of the methodology de-
scribed in (Chen and Rudnicky, 2014a; Chen and Rud-
nicky, 2014b). However, our proposed system has no man-
ual labor involved and with some level of post processing
has been shown to deceive an automated supervised classi-
fication system.
Phishing email Detection. In this paper, we focus primar-
ily on generation of fake emails specifically engineered for
phishing and scamming victims. Additionally, we also look
at some state-of-the-art phishing email detection systems.
Researchers in (Basnet et al., 2008) extract a large number
of text body, URL and HTML features from emails, which

are then fed into supervised (SVMs, Neural Networks) as
well as unsupervised (K-Means clustering) algorithms for
the final verdict on the email nature. The system proposed
in (Chandrasekaran et al., 2006) extracts 25 stylistic and
structural features from emails, which are given to a super-
vised SVM for analysis of email nature. Newer techniques
for phishing email detection based on textual content anal-
ysis have been proposed in (Verma et al., 2012; Verma and
Hossain, 2013; Verma and Aassal, 2017; Yu et al., 2009).
Masquerade attacks are generated by the system proposed
in (Baki et al., 2017), which tunes the generated emails
based on legitimate content and style of a famous personal-
ity. Moreover, this technique can be exploited by phishers
for launching email masquerade attacks, therefore making
such a system extremely dangerous.

3. Experimental Methodology
The section has been divided into four subsections. We de-
scribe the nature and source of the training and evaluation
data in Section 3.1. The pre-processing steps are demon-
strated in Section 3.2. The system setup and experimental
settings have been described in Section 3.3.

3.1. Data description
To best emulate a benign email, a text generator must learn
the text representation in actual legitimate emails. There-
fore, it is necessary to incorporate benign emails in training
the model. However, as a successful attacker, our main aim
is to create the perfect deceptive email - one which despite
having malign components like poisoned links or attach-
ments, looks legitimate enough to bypass statistical detec-
tors and human supervision.
Primarily, for the reasons stated above, we have used mul-
tiple email datasets, belonging to both legitimate and ma-
licious classes, for training the system model and also in
the quantitative evaluation and comparison steps. For our
training model, we use a larger ratio of malicious emails
compared to legitimate data (approximate ratio of benign
to malicious is 1:4).
Legitimate dataset. We use three sets of legitimate emails
for modeling our legitimate content. The legitimate emails
were primarily extracted from the outbox and inbox of real
individuals. Thus the text contains a lot of named entities
belonging to PERSON, LOC and ORGANIZATION types.
The emails have been extracted from three different sources
stated below:

• 48 emails sent by Sarah Palin (Source 1) and 55 from
Hillary Clinton (Source 2) obtained from the archives
released in (The New York Times, 2011; WikiLeaks,
2016) respectively.

• 500 emails from the Sent items folder of the employ-
ees from the Enron email corpus (Source 3) (Enron
Corpus, 2015).

Malicious dataset. The malicious dataset was difficult to
acquire. We used two malicious sources of data mentioned
below:

• 197 Phishing emails collected by the second author -
called Verma phish below.



• 3392 Phishing emails from Jose Nazario’s Phishing
corpus 1 (Source 2)

Evaluation dataset. We compared our system’s output
against a small set of automatically generated emails pro-
vided by the authors of (Baki et al., 2017). The provided
set consists of 12 emails automatically generated using the
Dada Engine and manually generated grammar rules. The
set consists of 6 emails masquerading as Hillary Clinton
emails and 6 emails masquerading as emails from Sarah
Palin.
Tables 1 and 2 describe some statistical details about the
legitimate and malicious datasets used in this system. We
define length (L) as the number of words in the body of an
email. We define Vocabulary (V ) as the number of unique
words in an email.

Dataset Count Avg. L Avg. V
Clinton 48 32 21

Palin 55 33 26
Enron 500 91 53
Total 603 81 48

Table 1: Legitimate Data Statistics

Dataset Count Avg. L Avg. V
Verma Phish 197 153 99

Nazario Phish 3392 210 129
Total 3589 207 127

Table 2: Phishing Data Statistics

A few observations from the datasets above: the malicious
content is relatively more verbose than than the legitimate
counterparts. Moreover, the size of the malicious data is
comparatively higher compared to the legitimate content.

3.2. Data Filtering and Preprocessing
We considered some important steps for preprocessing the
important textual content in the data. Below are the com-
mon preprocessing steps applied to the data:

• Removal of special characters like @, #, $, % as well
as common punctuations from the email body.

• emails usually have other URLs or email IDs. These
can pollute and confuse the learning model as to what
are the more important words in the text. Therefore,
we replaced the URLs and the email addresses with
the <LINK> and <EID> tags respectively.

• Replacement of named entities with the <NET> tag.
We use Python NLTK NER for identification of the
named entities.

On close inspection of the training data, we found that the
phishing emails had incoherent HTML content which can
pollute the training model. Therefore, from the original

1http://monkey.org/˜jose/wiki/doku.php
(2004), Deprecated now

data (in Table 2), we carefully filter out the emails that were
not in English, and the ones that had all the text data was
embedded in HTML. These emails usually had a lot of ran-
dom character strings - thus the learning model could be
polluted with such random text. Only the phishing emails
in our datasets had such issues. Table 3 gives the details
about the filtered phishing dataset.

Dataset Count Avg. L Avg. V
Verma Phish 127 50 34

Nazario Phish 2148 115 71
Total 2275 112 70

Table 3: Phishing Data Statistics after filtering step

3.3. Experimental Setup
We use a deep learning framework for the Natural Lan-

guage Generation model. The system used for learning
the email model is developed using Tensorflow 1.3.0 and
Python 3.5. This section provides a background on a Re-
current Neural Network for text generation.
Deep Neural Networks are complex models for computa-
tion with deeply connected networks of neurons to solve
complicated machine learning tasks. Recurrent Neural Net-
works (RNNs) are a type of deep learning networks better
suited for sequential data. RNNs can be used to learn char-
acter and word sequences from natural language text (used
for training). The RNN system used in this paper is ca-
pable of generating text by varying levels of granularity,
i.e. at the character level or word level. For our training
and evaluation, we make use of Word-based RNNs since
previous text generation systems (Xie et al., 2017), (Hen-
derson et al., 2014) have generated coherent and readable
content using word-level models. A comparison between
Character-based and Word-based LSTMs in (Xie et al.,
2017) proved that for a sample of generated text sequence,
word level models have lower perplexity than character
level deep learners. This is because the character-based
text generators suffer from spelling errors and incoherent
text fragments.

3.3.1. RNN architecture
Traditional language models like N-grams are limited by
the history or the sequence of the textual content that these
models are able to look back upon while training. However,
RNNs are able to retain the long term information provided
by some text sequence, making it work as a “memory”-
based model. However while building a model, RNNs are
not the best performers when it comes to preserving long
term dependencies. For this reason we use Long Short
Term Memory architectures (LSTM) networks which are
able to learn a better language/text representation for longer
sequences of text.
We experiment with a few combinations for the hyper-
parameters- number of RNN nodes, number of layers,
epochs and time steps were chosen empirically. The in-
put text content needs to be fed into our RNN in the form
of word embeddings. The system was built using 2 hid-
den LSTM layers and each LSTM cell has 512 nodes. The
input data is split into mini batches of 10 and trained for

http://monkey.org/~jose/wiki/doku.php


100 epochs with a learning rate of 2× 10−3. The sequence
length was selected as 20. We use cross − entropy or
softmax optimization technique (Goodfellow et al., 2016)
to compute the training loss, Adam optimization tech-
nique (Kingma and Ba, 2014) is used for updating weights.
The system was trained on an Amazon Web Services EC2
Deep Learning instance using an Nvidia Tesla K80 GPU.
The training takes about 4 hours.

3.3.2. Text Generation and Sampling
The trained model is used to generate the email body based
on the nature of the input. We varied the sampling tech-
nique of generating the new characters for the text genera-
tion.
Generation phase. Feeding a word (ŵ0) into the trained
LSTM network model, will output the word most likely to
occur after ŵ0 as ŵ1 depending on P (ŵ1 | ŵ0). If we want
to generate a text body of n words, we feed ŵ1 to the RNN
model and get the next word by evaluating P (ŵ2 | ŵ0, ŵ1).
This is done repeatedly to generate a text sequence with n
words: ŵ0, ŵ1, ŵ2, ..., ŵn.
Sampling parameters. We vary our sampling parameters
to generate the email body samples. For our implementa-
tion, we choose temperature as the best parameter. Given a
sequence of words for training, w0, w1, w2, ..., wn, the goal
of the trained LSTM network is to predict the best set of
words that follow the training sequence as the output (ŵ0,
ŵ1, ŵ2, ..., ŵn).
Based on the input set of words, the model builds a proba-
bility distribution P (wt+1 | wt′≤t) = softmax(ŵt), here
softmax normalization with temperature control (Temp)
is defined as:

P (softmax(ŵj
t )) =

K(ŵj
t ,Temp)∑n

j=1
K(ŵj

t ,Temp)
, where

K(ŵj
t , T emp) = e

ŵ
j
t

Temp

The novelty or eccentricity of the RNN text generative
model can be evaluated by varying the Temperature pa-
rameter between 0 < Temp. ≤ 1.0 to generate samples
of text (the maximum value is 1.0). We vary the nature
of the model’s predictions using two main mechanisms -
deterministic and stochastic. Lower values of Temp. gen-
erates relatively deterministic samples while higher values
can make the process more stochastic. Both the mecha-
nisms suffer from issues, deterministic samples can suffer
from repetitive text while the samples generated using the
stochastic mechanism are prone to spelling mistakes, gram-
matical errors, nonsensical words. We generate our samples
by varying the temperature values to 0.2, 0.5, 0.7 and 1.0.
For our evaluation and detection experiments, we randomly
select 25 system generated samples, 2 samples generated at
a temperature of 0.2, 10 samples at temperature 0.5, 5 sam-
ples at a temperature of 0.7 and 8 samples at temperature
1.0.

3.3.3. Customization of Malicious Intent
One important aspect of malicious emails is their harmful
intent. The perfect attack vector will have malicious ele-
ments like a poisonous link or malware attachment wrapped
in legitimate context, something which is sly enough to fool

both a state-of-the-art email classifier as well as the vic-
tim. One novelty of this system training is the procedure of
injecting malicious intent during training and generating
malicious content in the synthetic emails.
We followed a percentage based influx of malicious content
into the training model along with the legitimate emails.
The training models were built by varying the percentage
(5%, 10%, 30% and 50%) of phishing emails selected from
the entire phishing dataset along with the entire legitimate
emails dataset. We trained separate RNN models on all
these configurations. For studying the varying content in
emails, we generate samples using temperature values at
0.2, 0.5, 0.7 and 1.0.

3.4. Detection using Existing Algorithms

We perform a simple quantitative evaluation by using
three text-based classification algorithms on our gener-
ated emails. Using the Python SciKit-Learn library, we
test three popular text-based filtering algorithms - Sup-
port Vector Machines (Maldonado and L’Huillier, 2013),
Naive Bayes (Witten et al., 2016) and Logistic Regres-
sion (Franklin, 2005).
The training set was modeled as a document-term matrix
and the word count vector is used as the feature for build-
ing the models. For our evaluation, we train models using
Support Vector Machines (SVM), Naive Bayes (NB) and
Logistic Regression (LR) models on a training data of 300
legitimate emails from WikiLeaks archives2 and 150 phish-
ing emails from Cornell PhishBowl (IT@Cornell, 2018).
We test the data on 100 legitimate emails from WikiLeaks
archives that were not included in the training set and 25
‘fake’ emails that were generated by our natural language
generation model.

4. Analysis and Results

We discuss the results of the generative RNN model in this
section. We give examples of the email text generated with
various training models and varying temperatures. We also
provide the accuracy of the trained classifiers on a subset
of these generated email bodies (after slight post process-
ing). We try to provide a qualitative as well as a quantitative
review of the generated emails.

4.1. Examples of Machine generated emails

(A) Training only on Legitimates and varying sampling
temperatures
We show examples of emails generated using models
trained on legitimate emails and sampled using a tempera-
ture of 1.0.

Example I at Temperature = 1.0:
Dear <NME> The article in the <NME> offers promo-
tion should be somewhat changed for the next two weeks.
<NME> See your presentation today. <NME>

2https://wikileaks.org/
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Example II Example I at Temperature = 0.7:
Sir I will really see if they were more comments tomor-
row and review and act upon this evening <NET>. The
engineer I can add there some <LINK> there are the is-
sues <NET>. Could you give me a basis for the call him
he said

The example above shows that while small substrings make
some sense. The sequence of text fragments generated
make very little sense when read as a whole. When com-
paring these with the phishing email structure described in
(Drake et al., 2004), the generated emails have very little
malicious content. The red text marks the incongruous text
pieces that do not make sense.
(B) Training on Legitimates + 5% Malicious content:
In the first step of intent injection, we generate emails by
providing the model with all the legitimate emails and 5%
of the cleaned phishing emails data (Table 3). Thus for this
model, we create the input data with 603 legitimate emails
and 114 randomly selected phishing emails. We show as
examples two samples generated using temperature values
equal to 0.5 and 0.7.

Example I at Temperature = 0.5:
Sir Here are the above info on a waste of anyone, but an
additional figure and it goes to <NET>. Do I <NET>
got the opportunity for a possible position between our
Saturday <NME> or <NET> going to look over you in
a presentation you will even need <NET> to drop off the
phone.

Example II at Temperature = 0.7:
Hi owners <NET> your Private <NET> email from
<NET> at <NET> email <NET> Information I’ll know
our pending your fake check to eol thanks <NET> and
would be In maintenance in a long online demand

The model thus consists of benign and malicious emails in
an approximate ratio of 5:1. Some intent and urgency can
be seen in the email context. But the incongruent words
still remain.

(C) Training on Legitimates + 30% Malicious content:
We further improve upon the model proposed in (B). In this
training step, we feed our text generator all the legitimate
emails (603 benign) coupled with 30% of the malicious
emails data (683 malicious). This is an almost balanced
dataset of benign and phishing emails. The following
examples demonstrate the variation in text content in the
generated emails.

Example I at Temperature = 0.5:
Sir we account access will do so may not the emails about
the <NET> This <NET> is included at 3 days while
when to <NET> because link below to update your ac-
count until the deadline we will received this information
that we will know that your <NET> account information
needs

Example II at Temperature = 1.0:
Dear registered secur= online, number: hearing from This
trade guarded please account go to pay it. To modify your
Account then fill in necessary from your notification pref-
erences, please PayPal account provided with the integrity
of information on the Alerts tab.

A good amount of text seems to align with the features
of malicious emails described in (Drake et al., 2004)
have malicious intent in it. We choose two examples to
demonstrate the nature of text in the generated emails. We
include examples from further evaluation of steps.

(D) Training on Legitimates + 50% Malicious content:

In this training step, we consider a total of 50% of the
malicious data (1140 phishing emails) and 603 legitimate
emails. This is done to observe whether training on an
unbalanced data, with twice the ratio of malign instances
than legitimate ones, can successfully incorporate obvious
malicious flags like poisonous links, attachments, etc.
We show two examples of emails generated using deep
learners at varying sampling temperatures.

Example I at Temperature = 0.7:
If you are still online. genuine information in the mes-
sage, notice your account has been frozen to your account
in order to restore your account as click on CONTINUE
Payment Contact <LINK> UK.

Example IT at Temperature = 0.5:
Hi will have temporarily information your account will be
restricted during that the Internet accounts and upgrading
password An data Thank you for your our security of your
Account Please click on it using the <NET> server This
is an new offer miles with us as a qualified and move in

The generated text reflects malicious features like URL
links and tone of urgency. We can assume that the model
picks up important cues of malign behavior. The model
then learns to incorporate such cues into the sampled data
during training phase.

4.2. Evaluation using Detection Algorithm
We train text classification models using Support Vector
Machines (SVM), Naive Bayes (NB) and Logistic Regres-
sion (LR) models on a training data of 300 legitimate emails
from WikiLeaks archives3 and 150 phishing emails from
Cornell PhishBowl (IT@Cornell, 2018). We test the data
on 100 legitimate emails from WikiLeaks archives that
were not included in the training set and 25 ‘fake’ emails
that were generated by our natural language generation
model trained on a mix of legitimate and 50% malicious
emails. We randomly select the emails (the distribution is:
2 samples generated at a temperature of 0.2, 10 samples at
temperature 0.5, 5 samples at a temperature of 0.7 and 8
samples at temperature 1.0) for our evaluation.
We use the Scikit-Learn Python library to generate the
document-term matrix and the word count vector from a
given sample of email text body used as a feature for train-

3https://wikileaks.org/
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ing the classification models. The Table 4 reports the ac-
curacy, precision, recall, and F1-scores on the test dataset
using SVM, Naive Bayes and Logistic Regression classi-
fiers.

Classifier Accuracy Precision Recall F1-score
SVM 71 72 85 78
NB 78 91 75 82
LR 91 93 95 94

Table 4: Classification metrics of generated emails

Despite the incoherent nature of the generated emails, the
text-based classifiers do not achieve a 100% accuracy as
well as F1-scores.

4.3. Comparison of emails with another NLG
model

The authors in (Baki et al., 2017) discuss using a Recursive
Transition Network for generating fake emails similar in
nature to legitimate emails. The paper discusses a user
study testing the efficacy of these fake emails and their
effectiveness in being used for deceiving people. The
authors use only legitimate emails to train their model and
generate emails similar to their training data - termed as
‘fake’ emails. In this section, we compare a couple of
examples selected randomly from the emails generated by
the Dada Engine used in (Baki et al., 2017) and the outputs
of our Deep Learning system generated emails.

Generated by the RNN (Example I):
Hi will have temporarily information your account will be
restricted during that the Internet accounts and upgrading
password An data Thank you for your our security of
your Account Please click on it using the < NET >
server This is an new offer miles with us as a qualified
and move in

Generated by the RNN (Example II):
Sir Kindly limit, it [IMAGE] Please contact us contained
on this suspension will not be = interrupted by 10 product,
or this temporary cost some of the

Generated by the Dada Engine:
Great job on the op-ed! Are you going to submit? Also,
Who will be attending?

The examples provide evidence that emails generated by
the RNN are more on the lines of phishing emails than the
emails generated by the Dada Engine. Of course, the goal
of the email generated by the Dada engine is masquerade,
not phishing. Because of the rule-based method employed
that uses complete sentences, the emails generated by the
Dada engine have fewer problems of coherence and gram-
maticality.

5. Error Analysis
We review two types of errors observed in the evaluation

of our RNN text generation models developed in this study.
First, the text generated by multiple RNN models suffer
from repetitive tags and words. The example of the email

body below demonstrates an incoherent and absurd piece
of text generated by the RNN trained on legitimate emails
and 50% of phishing emails with a temperature of 0.5.

Hi 48 PDX Cantrell <LINK> <NET> <NET> ECT
ECT <NET><NET> ECT ECT <NET><NET> ECT
ECT <NET> <NET> ECT ECT <NET> F <NET>
ECT ECT <NET> G Slaughter 06 07 03 57 DEVEL-
OPMENT 06 09 2000 07 01 <NET> <NET> ECT EN-
RON 09 06 03 10 23 PM To <NET> <NET> ECT ECT
cc <NET> <NET> ECT ECT Subject Wow Do not un-
derestimate the employment group contains Socal study
about recession impact <NET> will note else to you for
a revised Good credit period I just want to bring the after-
noon <NET> I spoke to <NET> Let me know if

This kind of repetitive text generation was observed a num-
ber of times. However, we have not yet investigated the
reasons for these repetitions. This could be an inherent
problem of the LSTM model, or it could be because of the
relatively small training dataset we have used. A third is-
sue could be the temperature setting. More experiments are
needed to determine the actual causes.
The second aspect of error analysis is to look at the
misclassification by the statistical detection algorithms.
Here we look at a small sample of emails that were marked
as legitimate despite being fake in nature. We try to
investigate the factors in the example sample that can
explain the misclassification errors by the algorithms.

Example (A):
Hi GHT location <EID> Inc Dear <NET> Password Lo-
cation <NET> of <NET> program We have been riding
to meet In a of your personal program or other browser
buyer buyer The email does not commit to a secure F
or security before You may read a inconvenience during
Thank you <NET>

Example (B):
Sir we account access will do so may not the emails about
the <NET> This <NET> is included at 3 days while
when to <NET> because the link below to update your
account until the deadline we will received this informa-
tion that we will know that your <NET> account infor-
mation needs

Example (C):
Sir This is an verificati= <LINK> messaging center, have
to inform you that we are conducting more software, Re-
garding Your Password : <LINK> & June 20, 2009 Web-
mail Please Click Here to Confirm

Examples (A), (B) and (C) are emails generated from a
model trained on legitimate and 50% of phishing data (Type
(D) in Section 4.1.) using a temperature of 0.7. There can
be quite a few reasons for the misclassification - almost all
the above emails despite being ‘fake’ in nature have consid-
erable overlap with words common to the legitimate text.



Moreover, Example (A) has lesser magnitude of indication
of malicious intent. And the amount of malicious intent in
Example (B), although notable to the human eye, is enough
to fool a simple text-based email classification algorithm.
Example (C) has multiple link tags implying possible ma-
licious intent or presence of poisonous links. However, the
position of these links play an important role in deceiving
the classifier. A majority of phishing emails have links at
the end of the text body or after some action words like
click, look, here, confirm etc. In this case, the links have
been placed at arbitrary locations inside the text sequence
- thereby making it harder to detect. These misclassifica-
tion or errors on part of the classifier can be eliminated by
human intervention or by designing a more sensitive and
sophisticated detection algorithm.

6. Conclusions and Future Work
While the RNN model generated text which had ‘some’
malicious intent in them - the examples shown above are
just a few steps from being coherent and congruous. We de-
signed an RNN based text generation system for generating
targeted attack emails which is a challenging task in itself
and a novel approach to the best of our knowledge. The ex-
amples generated however suffer from random strings and
grammatical errors. We identify a few areas of improve-
ment for the proposed system - reduction of repetitive con-
tent as well as inclusion of more legitimate and phishing ex-
amples for analysis and model training. We would also like
to experiment with addition of topics and tags like ‘bank ac-
count’, ‘paypal’, ‘password renewal’, etc. which may help
generate more specific emails. It would be interesting to
see how a generative RNN handles topic based email gen-
eration problem.
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